Exercice 1 — Pourcentages

- 1. Le prix d'un produit augmente de 10% par an. Le produit coûte 100€ en 2010. Combien coûte-t-il en 2011? Combien coûte-t-il en 2012?
- ${f 2}$. Un salaire augmente de $20\,\%$, puis il diminue de $20\,\%$. Globalement, a-t-il augmenté ou diminué ou est-il resté le même ?

www.mathoman.com

Exercice 2 —

Calculer:

$$A = \sum_{i=0}^{3} 2i$$

$$B = \sum_{k=1}^{5} n$$

$$C = \frac{(n+2)^5}{(n+2)^2}$$

Exercice 3 —

- 1. Développer $(x+y)^3$.
- **2**. Trouver le coefficient de x^2y^2 dans le développement de $(2x+y)^4$.
- **3**. Soit $a = 5 \times 10^{-2}$, $b = 3 \times 10^3$ et $c = 2 \times 10^2$. Calculer *abc*.
- 4. Résoudre $e^{x-1}e^{x^2}e^{-x} = 1$.

Exercice 4 —

- 1. Donner un réel x qui vérifie l'inégalité $|x+1|\leqslant 2$.
- **2**. Résoudre $|x+1| \leqslant 2$ dans \mathbb{R} .

www.mathoman.com 4

Exercice 5 —

On note $\mathscr A$ l'assertion suivante.

$$\exists \, x \in \mathbb{Z} \; \forall \, y \in \mathbb{Z} \; : \quad x < y.$$

- 1. Ecrire la négation de \mathscr{A} .
- 2. L'assertion 🖋 est-elle vraie? Prouvez votre réponse.

Corrigé de l'exercice 1 — Pourcentages

- 1. Le produit coûte 110 € en 2011 et 121 € en 2012.
- **2**. Globalement il est multiplié par $1,2\times0,8=0,96$. Donc il a diminué de $4\,\%$.

Corrigé de l'exercice 2

A = 12,

$$B = 5n$$
,

$$C = (n+2)^3.$$

Corrigé de l'exercice 3 —

- 1. $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$.
- **2**. Le coefficient demandé est $\binom{4}{2}2^2 = 24$.

3.
$$abc = 3 \times 10^4$$

3.
$$abc = 3 \times 10^4$$
.
4. $e^{x-1}e^{x^2}e^{-x} = 1 \iff e^{x^2-1} = 1$
 $\iff x^2 - 1 = 0 \iff x = \pm 1$.

Corrigé de l'exercice 4 —

- 1. Le nombre 0 vérifie l'inégalité $|x+1| \leq 2$.
- **2.** $|x+1| \leqslant 2 \iff -2 \leqslant x+1 \leqslant 2 \iff -3 \leqslant x \leqslant 1$.

Corrigé de l'exercice 5 —

1. La négation $\neg \mathscr{A}$ de \mathscr{A} est

$$\forall x \in \mathbb{Z} \ \exists \ y \in \mathbb{Z} : \quad x \geqslant y.$$

2. L'assertion $\mathscr A$ est fausse. Montrons que $\neg \mathscr A$ est vraie. Soit $x\in \mathbb Z$. On pose y=x. Alors $y\in \mathbb Z$ et $x\geqslant y$.