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Intelligencer in 1985-6.

1. Introduction. In [2] (see also [5]) N. G. de Bruijn proved a result about
packing n-dimensional bricks into an n-dimensional box that, when n = 2, implies
that if an a X b rectangle is tiled with copies of a ¢ X d rectangle, then each of ¢, d
divides one of a, b. By a tiling we mean a covering with interior pairwise-disjoint
sets. De Bruijn’s proof has been generalized to yield the following more general
‘theorem (illustrated in Figure 1), which implies his result on bricks (in the case
n = 2, divide each side of the box by ¢ (resp., d)).

THEOREM 1. Whenever a rectangle is tiled by rectangles each of which has at least
one integer side, then the tiled rectangle has at least one integer side.

At the 1985 Summer Meeting of the MAA in Laramie, Wyoming, Hugh
Montgomery mentioned this theorem and the proof using double integrals, in the
hope of stimulating a search for more elementary proofs. That he did, as proofs
have been forthcoming from various countries. Indeed, the variety of techniques
that have been brought to bear is striking. Paul Erdos [1, p. 87] has suggested that
“[God] has a transfinite book of theorems in which the best proofs are written.” It is
by no means clear which of the many proofs that follow is the best (the criteria for
inclusion in the book are not readily available!). Perhaps none of these proofs is in
the book, and the “best” proof has yet to be discovered. Even if simplicity is taken
as the criterion, it is not completely clear which proof wins— the checkerboard and
bipartite graph proofs seem to be the top candidates. And if strength is taken into
account, that is, the ability to yield, perhaps with modification, more general results,
then the situation is complicated. Variations of the theorem are true on the cylinder
and torus, in higher dimensions, and for multiple tilings, but no one of the proofs is
best in terms of its ability to generalize. Before reading Section 3 the reader might
enjoy trying to predict which of the proofs are most likely to generalize.

Max Zorn has pointed out that Dehn considered similar questions in 1903. Dehn
[3, p. 327] proved, as a corollary to a rather different sort of investigation, that if a
rectangle is tiled as in Theorem 1, then one of the sides is rational.
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F1G. 1. An example of a tiling in which each tile has at least one integer side. The tiles labelled “H ” have
integer width; those labelled “V ” have integer height.

2. The proofs. The width (resp., height) of a rectangle denotes its horizontal
(resp., vertical) dimension. Given a tiling as in Theorem 1, let R denote the ambient
rectangle. Let a tile with integer width be called an H-tile (“horizontal tile”); the
other tiles, necessarily having integer height, are called V-tiles (“ vertical tiles”). It is
often assumed that R is in standard position, that is, its lower left corner is at the
origin and its sides are parallel to the coordinate axes in the x-y plane.

(1) Complex double integral (extends original method of de Bruijn) First observe
that f2sin27xdx = 0 if and only if one of @ + b is an integer and [’cos27xdx = 0
if and only if one of a — b,a+ b —1/2 is an integer. It follows that for any
rectangle T in the x—y plane with sides parallel to the axes,

fLeZwi(x+y)M =0

if and only if at least one side of T has integer length. Now, the hypothesis implies
that the double integral over each tile vanishes and therefore, by additivity of
integrals, the double integral over R is zero. This implies that either the width or
height of R is an integer. B

(2) Real double integral (variation of complex double integral proof) Assume R
is an a X b rectangle in standard position. As in the preceding proof,
[[rsin2@x sin2wydA4 = 0 for each tile T. Therefore, the double integral over R
vanishes, which, because R has a corner at (0, 0), implies that at least one of a, b is
an intgger. (One could use other integrands as well, for example, (x — [x] — 1/2),
O-bi-1/2))m

(3) Checkerboard (Richard Rochberg, Washington Univ.; Sherman K. Stein)
Place R in standard position. Color the square lattice generated by a (1,/2) X (1/2)
square with lower left corner at (0,0) in black /white checkerboard fashion. Since
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F1G. 2. If neither a nor b is an integer then the upper right corner has more black than white.

each tile has an integer side, each tile contains an equal amount of black and white.
Therefore, the same is true of R. But then R must have an integer side for otherwise
it can be split into four pieces (see Figure 2), three of which have equal amounts of
black and white while the fourth does not. (This proof is derived from the preceding
proof by using the integrand (—1)2*l(-1)27]) m

(4) Counting squares (Imre Z. Ruzsa, Mathematical Institute of the Hungarian
Academy of Sciences, Budapest; Peter Gilbert, Digital Equipment Corp., Nashua,
NH) Place R in standard position and let {x;} (resp., {);}) be the set of
x-coordinates of vertical (resp., y-coordinates of horizontal) boundary lines of tiles.
Construct an auxiliary tiling (of a possibly new rectangle R’) by translating all line
segments in R’s tiling as follows. If a segment is on a line corresponding to an
integer value of x; or y,, it is not moved. If it is a vertical segment lying on x = x,,
where x; is not an integer, translate it rightward or leftward to the line x = [x;] +
1/2. Similarly, vertical segments on y = y; are translated up or down to y = [y;] +
1/2, if y; is not an integer. This construction may reduce the number of tiles, but
this is unimportant. -

Now, if the conclusion is false then R’ is a rectangle in standard position having
both side-lengths equal to one-half of an odd integer. Hence, R’ contains an odd
number of squares in the (uncolored) checkerboard described in the previous proof.
But the hypothesis implies that each tile in R’ has an even number of squares,
contradiction. ®
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(5) Polynomials (Adrien Douady, Ecole Normale Supérieure, Paris) Place R in
standard position and construct an auxiliary tiling in a way similar to the preceding
proof. Choose a parameter ¢ and translate only those segments having a noninteger
coordinate. Translate vertical segments on x = x; rightward to x = x; + ¢, and
horizontal segments upward to y =y; + ¢. If ¢ comes from a sufficiently small
interval [0, €], this construction yields a tiling of R’, with the same number of tiles
as in R.

Now, if the conclusion is false then R’ is an (a + ¢) X (b + t) rectangle whence
its area is a quadratic polynomial in z. But the hypothesis implies that each w X A
tile in R becomes, in R’, a tile of one of the forms w X (h + t), (w £ ¢) X h,
w X h. In all cases the area of the modified tile is a linear or constant function of ¢,
and, hence, the same is true of the area of R’. Since ¢ can take on any value in an
interval, this contradicts the quadratic representation of the area. B

(6) Prime numbers (Raphael Robinson, Univ. of California, Berkeley) We claim
that for each prime p, either the height or width of R is within 1/p of an integer. It
follows that one of these is an integer. To prove the claim, scale the entire tiling up
by a factor of p in each direction, and consider the tiling obtained by replacing all
tile-corners (x, y) in the scaled-up tiling by ([x],[y]). This yields an integer-sided
rectangle tiled by integer-sided rectangles, each of which has one side a multiple of

p. Therefore, the area of the large integer-sided rectangle is a multiple of p, whence
- one of its sides must be a multiple of p. Moreover, the dimensions of this rectangle
differ from the dimensions of the scaled-up rectangle by less than 1. It follows that
R has a side that differs from an integer by less than 1/p. R

(7) Eulerian path (Michael S. Paterson, Univ. of Warwick, Coventry, England)
Let T be the graph whose vertices are the corners of all the tiles, with two vertices
joined whenever they correspond to the ends of a horizontal side of an H-tile or the
vertical side of a V-tile. Multiple edges may exist. To make the picture clearer (and
to see that T is planar), curve the edges a little in the direction of the tile defining
the edge (see Figure 3). All vertices (except the corners of the large rectangle) lie on
either 2 or 4 rectangles, and hence on either 2 or 4 edges in I'. The corner vertices lie
on 1 edge. It follows that a walk along edges that begins at one corner and does not
repeat any edges will not terminate until it hits another corner, thus proving
Theorem 1. B

(8) Bipartite graph (variation of Eulerian path proof) Place R in standard
position, let S be the set of corners of tiles having both coordinates integers, and let
T be the set of tiles. Form a bipartite graph on S U T by connecting each point in
S to all tiles of which it is a corner. There is an even number of edges because the
hypothesis implies that each tile has 0, 2, or 4 corners in S. But each point in S that
is not a corner of R lies on either 2 or 4 tiles. Since (0, 0), which lies on only one tile,
is in S, there must be another point in S lying on an odd number of tiles. This can
happen only if another corner of R lies in S, which means that either the width or
height of R is an integer. B
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F1G. 3. The near-Eulerian graph T' arising from the tiling in Figure 1.

(9) Induction (Raphael Robinson) The proof will be by induction on the number
of H-tiles in a tiling in which each H-tile has width 1 and each V-tile has height 1.
Since tiles may be split in their designated direction, this case suffices. Choose any
H-tile T, (if there is none the result is immediate). If there are H-tiles whose lower
border shares a segment with 7;,’s upper border, choose one and call it T;. Otherwise
“-only V-tiles share this border, and we may expand 7;, upward 1 unit. This does not
increase the number of H-tiles, and the cut vertical tiles still have height 1. Continue
expanding T, upward until either the top of the rectangle is reached, or a choice of
an abutting H-tile T; is possible. Then continue upward similarly from 7; to get 7,,
etc. This yields a chain T;, T3, ..., T,, of H-tiles from T, to the top of R. We can
work downward from 7;, similarly, thus getting a chain

T ... T_, Ty, T,,..., T,

— oy Ly

of H-tiles stretching from bottom to top. Remove these tiles and slide the rest
together to get a rectangle with fewer H-tiles; induction applied to this smaller
rectangle yields the result for the original rectangle. B

(10) Induction, variation (Richard Bishop, Univ. of Illinois; Stan Wagon) Define
a V-link to be a maximal vertical line segment in the tiling whose interior is not
crossed by any horizontal line segment. Define H-link similarly. A link is reducible
if it is a V-link (resp., H-link) having only H-tiles (resp., V-tiles) on one of its sides.
In the tiling of Figure 1 there are lots of reducible links, for example, the V-link
separating the large V-tile in the center from the two H-tiles on its left. It suffices to
show that all tilings have a reducible link. For if we are given, say, a reducible V-link
with orly H-tiles bordering it on the right, let w be the width of the narrowest of
these H-tiles. Then expand all tiles bordering the V-link on the left w units
rightward (see Figure 4). Since heights are unchanged, V-tiles remain F-tiles; since
widths are changed by the addition or subtraction of w, H-tiles remain H-tiles. But
this expansion reduces the number of tiles by at least 1, as required for the
induction.
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F1G. 4. In (a), AB is a reducible V-link. Figure (b) shows the tiling after the tiles adjacent to AB on the
left have been expanded rightward.

A reducible link must exist, for otherwise there is a chain of H-tiles from bottom
to top, each connected to the next along an H-link, and a chain of V-tiles from left
to right, connected along V-links. The chains must cross, and the crossing must be
an intersection of an H-link with a V-link in the interior of the links, contradicting
the definition of'a link.

(11) Minimal cut-set (Paul Seymour, Bell Communications Research, Morris-
town, NJ) Define a graph I as follows. The vertices are all horizontal line segments
in the tiling, and two vertices are connected by m edges if there are m tiles (either
H-tiles or V-tiles) connecting the corresponding segments. The exterior of R is
considered as a tile, thus adding an additional edge connecting the top and bottom
vertices. The tiling yields an embedding of I' in the plane, since the vertical
bisectors of the tiles can be used to form the edges (Figure 5). The edge correspond-
ing to the additional tile can be drawn as in Figure 5, though it is more natural to
preserve symmetry by embedding on the surface of a sphere instead.

Let I'* be the dual graph of T'; the vertices of I'* are the faces of T' and two
vertices in I'* are connected by an edge if the corresponding faces in the planar
embedding of T' are incident. The faces of T' have a simple structure: each face
arises from part of a vertical segment in the tiling—a V-link, in the terminology of
the preceding proof (see Figure 5)—and all tiles adjacent to the V-link. And if two
faces in I' are incident along an edge, then there is a tile whose vertical boundaries
lie on the V-links corresponding to the faces.

Now let S be the set of edges in T corresponding to H-tiles, together with the
exterior edge from top to bottom. If the removal of S does not disconnect the top
vertex from the bottom vertex, then there is a top-to-bottom path with all vertical
steps integers, as desired. Otherwise, let S’ be a minimal subset of S whose removal
disconnects the top from the bottom in I', and let S* be the set of edges in ['*
corresponding to edges in S’. By a well-known theorem for planar graphs [7, Thm.
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Fi1G. 5. The upper diagram represents the graph I' of the minimal cut-set proof corresponding to the
tiling in Figure 1. Horizontal segments are vertices, and vertical segments are edges, marked with an H if
they arise from an H-tile in the tiling. The lower diagram shows the representation of the dual graph,
T'*, using V-links in the tiling and horizontal segments as edges. The edges in S’ and S*, corresponding
to a minimal cut-set in T, are H,, Hs, H,, H,;, and H,,.

15C], S$* is a cycle in I'*. Moreover, since S’ must contain the exterior edge, S *
induces a path from the left boundary of R to the right boundary, which has every
horizontal step of integer length. Therefore, the width of the rectangle is an
integer. B

(12) Sweep-line (Gennady Bachman, Univ. of Illinois; Mihalis Yannakakis, Bell
Labs, Murray Hill, NJ) Assume R is an a X b rectangle in standard position, and
that b 4s not an integer. Let { R;} be the set of tiles, but assume that the closed
segment forming the bottom border of each has been removed. Let a;, b; be the
width and height, respectively, of R;. Define f: [0, b] — [0, a] by setting f(¢) equal
to the sum of all a4, such that R, intersects the line y = ¢ and the y-coordinate of
the top of R; is not an integer. Then f(0) = 0 and it is easy to check that whenever
f changes its value then it does so in a way that it remains an integer; as the



608 STAN WAGON [August-September

“sweep-line” crosses a horizontal line in the tiling the difference between f’s gains
and losses is an integer. Therefore, f(b) is an integer. But since b is not an integer
f(b) is simply the sum of the widths of all tiles touching the top. that is, f(b) = a. B

(13) Step functions (Melvin Hochster, Univ. of Michigan; Attila Maté, Brooklyn
College) Place the rectangle in standard position. Then define a graph I' whose
vertices are all points on the x-axis such that some tile has a vertical boundary at
that value (call these x,, in increasing order), and all points on the y-axis that occur
as top or bottom coordinates of some tile ( y;). Connect two vertices on the x-axis if
some H-tile spans the interval and connect two vertices on the y-axis if some V-tile
spans the interval (see Figure 6). The goal is to show that the origin lies in the same
connected component of I' as either (a, 0) or (0, b).

Assign, in an arbitrary way, distinct numbers to the connected components in I'.
Then define a step function on [0, a] by defining f on the interval (x;, x;,,) to be

alof-4| o 0 8 | -8 0
-4lo0| 4| o 0 -8 8 0
4lof-4| o 0 8 | —s8 0
-3{o| 3| o 0 -6 6 0
3(o|-3]| o 0 6| -6 0

FI1G. 6. The graph (with components numbered 0-4) and grid of the step function proof, using the tiling
of Figure 1.
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the number of the component that contains x;_; less the number of the component
that contains x,. Note that the sum of the f-values on the intervals between two
vertices connected by an edge is 0. Define g similarly on [0, b]. Now, refine the
tiling into a grid by drawing all lines x = x; and y = y,, and observe that f(x)g(y)
is constant in the interior of each rectangle in the grid. Moreover, the sum of these
products over all grid rectangles contained in one of the tiles is 0 (see Figure 6).
Therefore, the sum over all grid rectangles is 0. But this sum is just the product of
Y{f(I): I an interval between consecutive vertices on the x-axis} with X{ f(J): J
an interval between consecutive vertices on the y-axis}. Therefore one of these sums
vanishes, which implies that the origin and one of (a,0),(0, b) lie in the same
component. B

(14) Sperner’s Lemma (James Schmerl, Univ. of Connecticut) Assume the
conclusion is false and R is placed in standard position. Triangulate R by drawing a
diagonal in each tile. Then label all vertices in the tiling as follows: (x, y) is labelled
Aif x €N, Bif x € Nbut y € N, and C if neither x nor y is an integer. Then by
a variation to Sperner’s Lemma (see [6, Lemma 2]), the number of triangles labelled
ABC is odd. But the hypothesis implies that no triangle is so labelled, contra-
diction. ® '

3. Generalizations. A first reaction to these proofs might be that they are not all
different, since many of them have similar ingredients. In some cases this view is
valid; the real double-integral proof is a specialization of the complex double-integral
proof, and the checkerboard proof is a discretization of the real double-integral
proof using a {+1}-valued function instead of a product of sines. Also, the two
induction proofs are closely related, as are the Eulerian path and bipartite graph
proofs. But an examination of various generalizations brings out differences in all
the other proofs (see Appendix).

A natural generalization of Theorem 1 is to the case where the integers are
replaced by other groups of reals. Consider a tiling of R where each tile has one
designated side, not necessarily of integer length (a tile with designated width (resp.,
height) is called an H-tile (resp., V-tile)). The goal here is to show that R has either
its width in the (additive) subgroup of R generated by widths of H-tiles or its height
in the group generated by heights of V-tiles. For example, if each tile has either
integer width or algebraic length, then R has either integer width or algebraic
length. The Eulerian path, minimal cut-set, sweep-line, step function, and poly-
nomial proofs, as well as the variation to the induction proof, all yield this
generalization with essentially no modifications. The bipartite graph proof works if
S is the set of tile-corners having both coordinates in the corresponding groups. The
inductipn proof can be made to work in this case, if one excises only part of the
chosen horizontal tiles, corresponding to the width of the narrowest member, thus
reducing the number of horizontal tiles.

Note that although the Eulerian path, minimal cut-set, and step function proofs
all work by finding a path in a certain graph, there are essential differences. The
first two use graphs that are planar, while the step function proof might construct a
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Fi1G. 7. Graph (a) is from the Eulerian path proof, the graphs labelled (b) are T and T'* from the
minimal cut-set proof, and graph (c) is from the step function proof.

nonplanar graph. The Eulerian proof is the only one of the three that shows that
there is a path along integer-length sides of tiles from one side of the rectangle to
the opposite side. However, the step function proof seems to have the capability of
discovering “paths” that the others miss (see Figure 7).

Rusza has pointed out that Theorem 1 remains true only if it is assumed that tiles
having at least one corner in Z? have an integer side (here we assume R is in
standard position). Another way of stating this is: Each tile has either 0, 2 or 4
corners in Z2. Rusza’s square-counting proof, the bipartite graph proof, and the
polynomial proof yield this result with no modification. The step function and
Eulerian path proofs work as well (for the latter, consider only vertices lying in Z?),
as does the Sperner Lemma proof.

As observed by several of the authors of proofs of Theorem 1, that result
generalizes to higher dimensions. All the proofs, except (apparently) the minimal
cut-set, sweep-line, and induction proofs, yield this generalization. Moreover, the
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higher-dimensional version allows k (rather than just 1) of the sides of each tile to
be “designated.”

THEOREM 2. Suppose a box R in R" is tiled with n-dimensional boxes and each tile
has at least k integer sides. Then R has at least k integer sides.

Proof. The polynomial proof requires almost no modification. The tiling can be
perturbed by moving hyperplanes ¢ units, for small ¢, as in the proof of Theorem 1.
If the conclusion is false then the volume of the modified box is a polynomial in ¢
having degree greater than k. But the hypothesis implies that each tile in the
auxiliary tiling is a polynomial of degree at most k, contradiction. B

Several of the other proofs work as well. For the real integral proof, replace the
integrand by the product of ¢ + sin2xx,, r = 1,..., n. Then the integral over a box
is a polynomial in ¢ that is divisible by ¢* if and only if the box has at least k
integer sides. For the prime number proof, consider only primes p larger than any
of the side-lengths. This guarantees that p? does not divide any of the side-lengths
in the scaled-up box. The step function proof works if f(x) and g(y) are replaced
by t + f(x;), t + f(x,),..., as in the extension of the integral proof, and a similar
approach generalizes the checkerboard proof, which works easily if k = 1. The
square counting proof works too, though if £ > 1 one must use an odd integer when
moving the boundary hyperplanes to an integer value; then the power of two
dividing the number of squares in the auxiliary rectangle corresponds to the number
of integer sides.

The Eulerian path and bipartite graph proofs yield Theorem 2 if k = 1, since
each corner (except the corners of the ambient box) still lies on an even number of
tiles. For larger k one can use induction, as pointed out by Andreu Mas-Colell: the
k = 1 case yields one integer-length side; then project to the hyperplane perpendicu-
lar to -this direction and use induction on the dimension. The advantage of this
inductive approach is that it yields Ruzsa’s extension for k > 1, where it is assumed
only that tiles having a corner with all coordinates integers have k integer sides.

The polynomial, Eulerian path, and step function proofs of Theorem 2 show that
the group-theoretical generalization to arbitrary n and k is valid. More precisely: If
an n-dimensional box is tiled by boxes, each of which has at least k designated
sides, then there are at least k directions in which the side-length of the ambient box
lies in the subgroup of R generated by the designated side-lengths in the direction.

Another generalization comes from considering multiple tilings of the rectangle,
that is, finitely many tiles that are not necessarily pairwise disjoint, but such that
each point of the ambient rectangle (except for the boundaries of the tiles) is
contained in the same finite number (the multiplicity) of tiles. The integration proofs
work in the integer case, as do the checkerboard, polynomial, square counting
(replace 1/2 by 1/p, where p is a prime larger than the multiplicity), and prime
number proofs (use primes larger than the multiplicity). The Eulerian path proof
will work if, as pointed out by Paterson, one makes a directed graph, with edges
directed out of the lower left and upper right corners of each tile, and into the other
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F1G. 8. H-tiles are 6 X 3; V-tiles are 2 X 6; torus is 10 X 15. Dividing by 6 yields a tiling of a 3 x 2
torus using 1 X 7 and § X 1 tiles.

two corners. Then the lower left corner has out-degree equal to the multiplicity,
while the vertices not equal to a corner have equal in-degree and out-degree. Hence
a directed walk starting from the lower left corner will end at one of the adjacent
corners of R. The Eulerian path, step function, and polynomial proofs work in the
case of groups as well.

Next, we can try to generalize to the case where sides of the rectangle are
identified, that is, to the cylinder or torus. Consider the cylinder first, where we
assume that opposite vertical sides are identified. The direct generalization of
Theorem 1 is valid, as shown by either the sweep-line proof, the induction proof
(which was invented for the cylinder and torus), the variation to the induction
proof, or the Eulerian path proof (modified as in the proof of Theorem 3 below).

The torus is more interesting since Theorem 1 is false. Consider an a X b flat
torus, that is, an a X b rectangle in the plane with opposite sides identified. The
example in Figure 8, discovered independently by Solomon Golomb and Raphael
Robinson, shows that the naive generalization of Theorem 1 is false.

Theorem 1 does nevertheless generalize to the torus, although the statement is
more complicated. The following theorem was first proved in the integer case by
Robinson, whose proof used the method of the induction proof of Theorem 1 and
could be extended to the case of arbitrary subgroups. The proof of Theorem 3 given
below combines ideas of the Eulerian path and induction proofs, and is due to Joan
Hutchinson and the author. Note the curious situation that the original result in
rectangles extends to arbitrary subgroups of R, while the toroidal result generalizes
to arbitrary subfields of R. '
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THEOREM 3 (R. M. Robinson). Suppose an a-by-b flat torus is tiled with rectangles
parallel to the sides of the torus. Suppose each tile, regardless of its length or width, is
designated to be either an H-tile or a V-tile and let Gy (resp., G,) be the group
generated by the widths of the H-tiles (resp., heights of the V-tiles). Then at least one
of the following is true:

1) aisin Gy

2) bisin Gy,

(3)  For some relatively prime integers m and n, ma is in Gy andnbisin G,.

Proof. Let T' be the graph associated with the tiling, as described in the Fulerian
path proof. On the torus, loops can occur. To ensure that T embeds on the torus,
curve the edges a little in the direction of the tile defining the edge; see Figure 9. As
in the planar case, each vertex has degree 2 or 4. (In degenerate cases, such as a
tiling with one tile, the corners have 2 or 4 loops.) Thus each component of T is
Eulerian. In particular, any edge lies on a simple cycle.

The proof will be by induction on N, the total number of tiles. If N = 1 either (0))]
or (2) holds. For N > 1 observe that if I’ has a noncontractible cycle, then one of
(1), (2) or (3) follows. For we may assume that there is a simple noncontractible
cycle C. If C winds exactly once in one of the directions then (1) or (2) holds.
Otherwise we may use the well-known result that if C winds more than once in one
direction, then its winding numbers in the two directions are relatively prime (this is
a consequence of P. Lévy’s “Universal Chord Theorem” which implies that if
ged(m, n) = d then a simple curve from the origin to (m, n) has a chord that is a
translate of the segment from the origin to (m/d, n/d) (see [4, p. 23])). This yields
(3). For example, the graph of the Robinson-Golomb tiling has two cycles, each
winding thrice around the horizontal direction and twice vertically, so 3a is in G
and 2b is in G,. However, there are tilings for which ' has no noncontractible
cycles (example in Figure 10); in such cases we shall show that the tiling can be
modified so that there are fewer than N tiles.

Suppose then that T has only contractible cycles. Then T must have a simple
contractible cycle with no edges in its interior (called an empty cycle). For if C is a

A B A
ni n O or ><A ><B
A B A
H or DAfG
AT 4

F1G. 9. Two examples—one with two tiles, one with just a single tile—of graphs associated with tilings
of a torus.
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F1G. 10. An example of a toroidal tiling for which the graph has no noncontractible cycle.

simple contractible cycle with the fewest number of edges in its interior then this
number must be 0; any edge inside C would lie on a cycle having fewer edges in its
interior than C does.

First suppose I' has an empty contractible cycle which, when viewed in the tiling,
has no tile in its interior. Such a cycle, viewed in the tiling, must traverse each part
of its boundary twice, once in each direction. Since the cycle is simple, this means it
can have no right angles, and so must look like one of the cycles in Figure 11. In
either case we can modify the tiles as in Figure 4 (expanding one side to absorb the
narrowest—or shortest—tile on the other side), which reduces N by at least 1, as
desired for the induction.

If there is no cycle as in the preceding paragraph, then I' has an empty
contractible cycle C that does have a tile, say, an H-tile, in it interior. Because C is
empty, both the top and bottom of the tile correspond to edges on C. Label the tile’s
corners a, b, c, d starting from the upper right and going clockwise. Because C is a
simple cycle, C must have the form a... bc. .. da. Now, adding the vertical steps in
C between a and b yields that the distance from a to b lies in G .. But then we may

GRS~

FIG. 11. A contractible cycle that, when viewed in the tiling, has no tile in its interior, must look like one
of these two cycles.
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switch the tile from an H-tile to a V-tile, shortening the length of the cycle. We can
continue shortening the cycle in this way until it no longer has a tile in its interior.
Then we are in the preceding case, where it was easy to reduce the number of tiles. B

Not too much is known for higher-dimensional tori. Robinson has generalized his
prime number proof to show that if such a torus is tiled with boxes having an
integer side, then the torus has at least one rational side. This can also be proved by
the step function proof, which has the advantage of working for arbitrary groups.

THEOREM 4 (Robinson, Maté). Suppose an n-dimensional flat torus with side-lengths
a;,, i=1,...,n, is tiled by n-dimensional boxes parallel to the sides of the torus, with
each tile havmg one designated side. Let G, be the group generated by the designated
side-lengths in the ith direction. Then for at least one a; there is a positive integer m
such that ma, is in G,.

Proof (Maté). We give the details assuming the case of an a X b flat torus in R
the extension to higher dimensions will be clear. Assume the a X b rectangle is in
standard position and the origin is the corner of a tile. Extend the tiling periodically-
to the whole plane and define a graph T as in the step function proof: If (x, y) is a
corner of a tile in any copy of the torus then the points (x, 0) and (0, y) are vertices.
Connect two vertices on the x-axis if the interval they define is spanned by an
H-tile in the tiling of the plane; this includes the case of tiles straddling a vertical
boundary of a torus. Define edges on the y-axis likewise using V-tiles.

It is sufficient to prove the following claim, for if T' has infinitely many vertices
on, say, the x-axis that are in the same connected component, then that component
must contain two vertices of the form (x,0), (x + ma,0). This implies that ma is
in G,.

Claim. The graph I' has an infinite connected component.

Proof of claim. To prove the claim, assume it is false. Then all components are
finite and we may define a function C; on the points on the x-axis corresponding to
vertices in I' by letting C;(x) be the least ¢ such that (¢,0) is in T and in the same
component as (x,0). Define C, for vertices on the y-axis similarly. Now define a
step function f on the x-axis by letting f equal C;(x”") — C;(x’) on the interval
between any two consecutive vertices x’, x”” in T.

As before, the sum of f-values over 1ntervals subdividing a single H-tile in the
tiling of R? is zero. Moreover, because of the periodicity of the tiling of the plane,
Ci(x + a) = Cy(x) + a and f is periodic with period a. It follows that the sum of
f-values over intervals subdividing a single H-tile in the original torus in standard
position is 0. These properties also hold for the step function g, defined using C,
analogously to f. To conclude; proceed as in Theorem 1 to refine the tiling into a
grid and observe that the sum of the fg values over a tile vanishes, whence the sum
over the entire a X b torus vanishes. But this is a contradiction since this sum
equals ab: the sum of f (resp., g) over the intervals in [0, a] (resp., [0, b]) is simply
Ci(a) — C1(0) = a (resp., C,(b) — C,(0) = b). W
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The preceding argument also works on a box in R” where some, but not all, sides
are identified. The result then states that either there is an “unidentified” direction
of the box whose side-length is in the subgroup generated by designated lengths in
that direction, or there is an “identified” direction for which an integer multiple of
the side-length is in the group corresponding to that direction. In the case of the
standard torus or cylinder this is not best possible, but the proofs in those cases do
not generalize to higher dimensions. Unlike the proof of Theorem 3, the preceding
argument works for multiple tilings, and so yields something for multiple tilings of
the standard two-dimensional torus: If each tile has one integer side then at least
one side of the torus is rational (and similarly in higher-dimensional multiple
tilings).

4. Summary and open questions. The various generalizations considered here do
a fairly complete job of distinguishing the proofs. If one calls two proofs equivalent
provided they work on the same set of generalizations then, unless new modifica-
tions are found, the only equivalences are (1) ~ (2) ~ (3) and (9) ~ (10). The two
most powerful proofs seem to be the Eulerian path and step function proofs. The
former fails only on high-dimensional tori, multiple tilings of the standard torus,
and the k& > 1 case of Theorem 2; the latter works in all cases, except the cylinder
and torus, where it does not yield the best possible result. A definitive comparison
will have to wait until the true situation in higher dimensions is resolved; see
Problem (a) below.

Problem (a). Can the seemingly weak statement about tilings of higher-dimen-
sional tori or cylinders be improved, or is it best possible? The simplest unsolved
case is that of a box with left and right faces identified. Can such a box having
dimensions a X B X y, where a is rational and 8 and vy are irrational, be tiled with
boxes each of which has one side of unit length?

Problem (b) (S. Golomb). For which triples (a, b, k) can the a X b torus be tiled
using copies (vertical or horizontal) of a 1 X k tile?

REMARKS. De Bruijn’s original result characterized the rectangles that could be
tiled using copies of a 1 X k tile: either the height or the width of the rectangle is a
multiple of k. This is true for an a X b torus if k is a prime power. This was first
proved by Robinson and Golomb using coloring techniques; it also follows from
Theorem 3 above if one divides everything by k£ and observes that the relatively
prime coefficients m and n cannot both absorb a power of the same prime. It
follows that k = 6 is the smallest number for which there is a triple (a, b, k) as in
Question (a) with neither a nor b divisible by k. An unsolved special case of
Question (a) is the problem of determining which a X b tori can be tiled with copies
of a1 X 6 tile. Golomb has shown that the 10 X 15 torus is the smallest example.

Problem (¢). What is the situation regarding double tilings of the standard torus
where each tile has at least one integer side? Is it true that either one side of the
torus is an integer or both sides are rational?
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Appendix to justify claim that proofs are different:

Proofs:

(1) Complex double integral
(2) Real double integral
(3) Checkerboard
(4) Counting squares
(5) Polynomials
(6) Prime numbers -
(7) Eulerian path
(8) Bipartite graph
(9) Induction
(10) Induction, variation
(11) Minimal cut-set
(12) Sweep-line
(13) Step functions
(14) Sperner’s Lemma

Proof number
1,2,3

Generalizations:

Plane

Plane, Ruzsa hypothesis

Plane, arbitrary groups

n-dimensions, k =1

n-dimensions, k£ > 1

n-dimensions, k > 1, Ruzsa hypothesis
Cylinder

Torus

Plane, multiple tiling

10. Plane, multiple tiling, arbitrary groups
11. High dimensional torus

12. Torus, multiple tiling
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